

Phase 2 of the Energy Storage Proceeding

Possible Models to Assess Cost Effectiveness

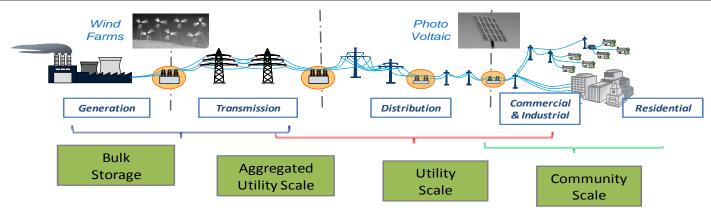
September 24, 2012

DNV - Integrity at the core

- Independent foundation established in 1864
- Self-owned with no shareholders
- Stakeholders are represented in our governing bodies and committees
- We use profits to continuously develop our people and our research and innovation

DNV KEMA - Energy & Sustainability

- DNV KEMA Energy & Sustainability offers innovative solutions to customers across the energy value chain, ensuring reliable, efficient and sustainable energy supply, now and in the future.
- 2300+ experts across all continents
- KEMA and DNV combined: a heritage of nearly 150 years
- US Headquarters in Burlington, MA
- Offices and agents in over 30 countries around the globe
- DNV Global: 300 Offices, 100 Countries, 10,400 Employees



Contents

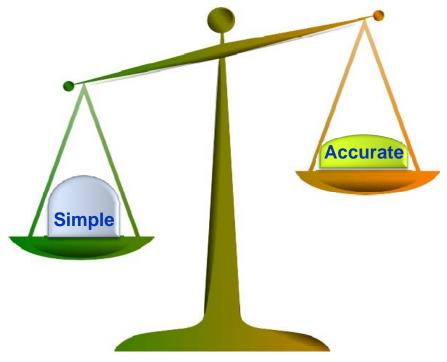
- 1 Examples of DNV KEMA Tools
- 2 Review of ES-Select
- 3 Review of Distribution Valuation Model
- 4 Review of DNV KERMIT Model
- 5 Example of Applying to Use Case

DNV KEMA Analysis Tools for Storage

- KEMA Tools are targeted to assess storage at each area of the grid
 - **ES Select**: Targeted to weigh various technologies of storage against specific applications and incorporating "bundling features" into the analysis used at all levels of the grid
 - **Distribution Valuation Tool**: Designed to assess benefits of storage applications at the distribution level through simulated circuit analysis focused on distribution
 - **KERMT Model**: Real time Simulation model to assess storage at the whole sale, generation level focuses on renewable integration and regulation
 - Peaker Model: Tool to assess storage as a peaker substitute
- Slides focus on ES-Select, Distribution Valuation Tool, and KERMIT Model

Contents

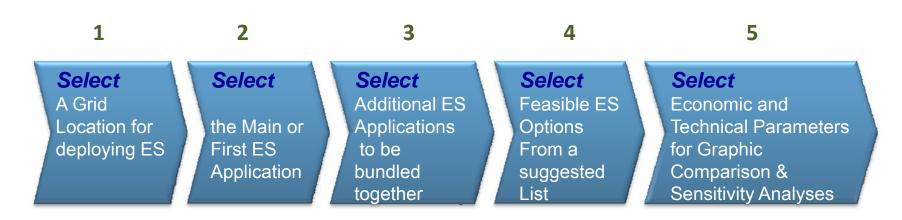
- 1 Examples of DNV KEMA Tools
- 2 Review of ES-Select
- 3 Review of Distribution Valuation Model
- 4 Review of DNV KERMIT Model
- 5 Example of Applying to Use Case


What Does ES-Select Provide?

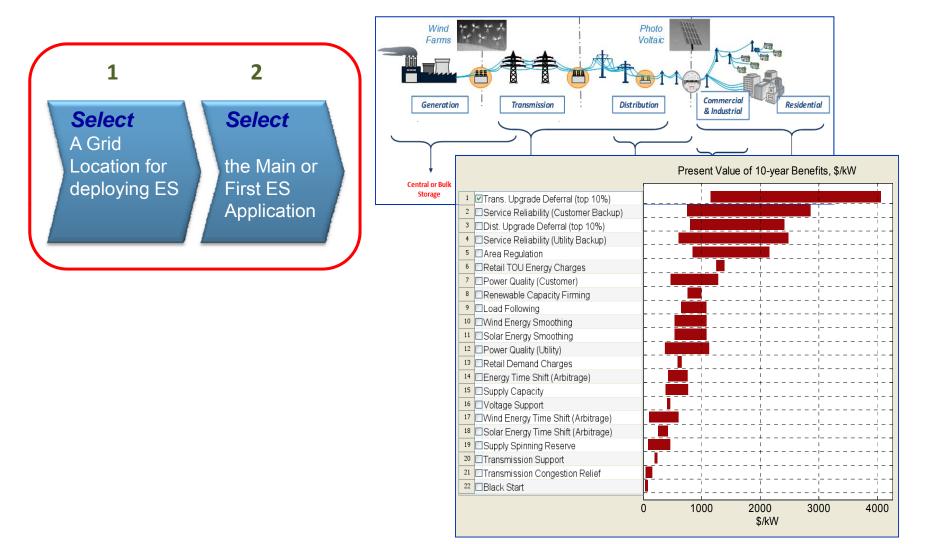
Why Build This Model?

- Prioritized list of feasible energy storage technology options for targeted applications
- Cost-performance comparison of feasible storage technologies
- 10-year technical market potential of applications in North America
- Present Value benefits over 10-years for applications in North America

http://www.sandia.gov/ess/esselect.html

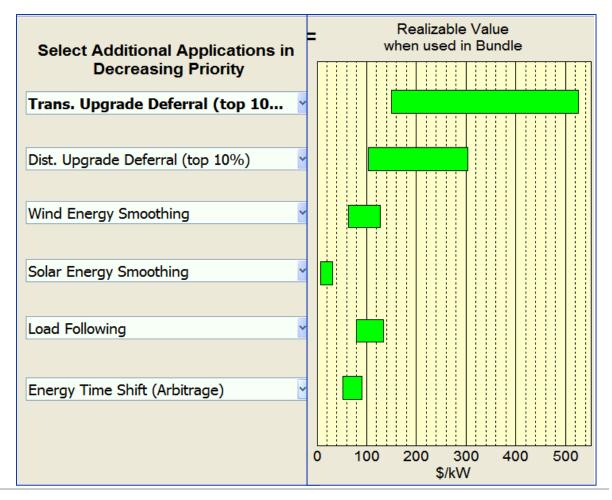


ES-Select Overview


In a step-by-step interactive manner, ES-Select identifies and compares the feasible Energy Storage (ES) options for different grid applications

- Asks: Location
- 2. Asks: Main Application
- 3. Option for: Additional Applications
- 4. Offers: Feasible ES Options
- 5. Compares the feasible ES Options

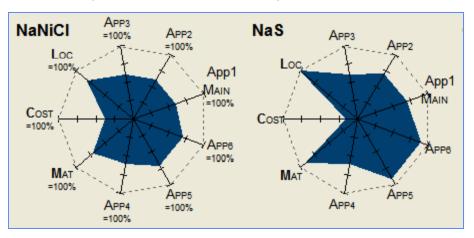
First Two Steps – Where & What Application?

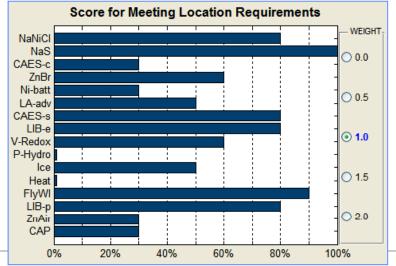


Next - Selection of Additional Applications

ES-Select identifies the next highest-value application, if desired.

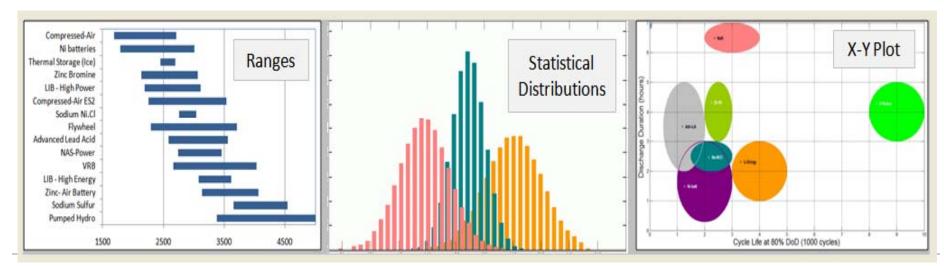
Select
Additional ES
Applications
to be
bundled
together

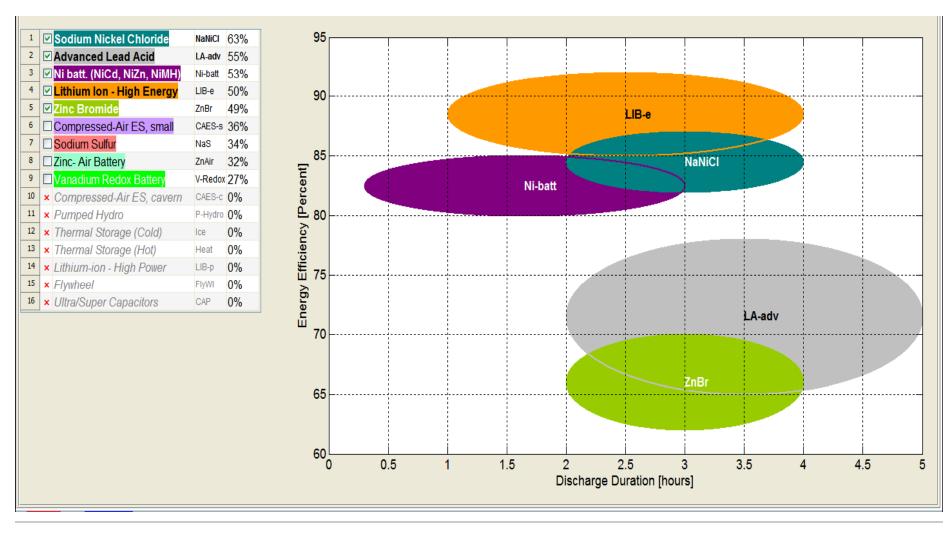



Output – A List of Feasible Storage Options

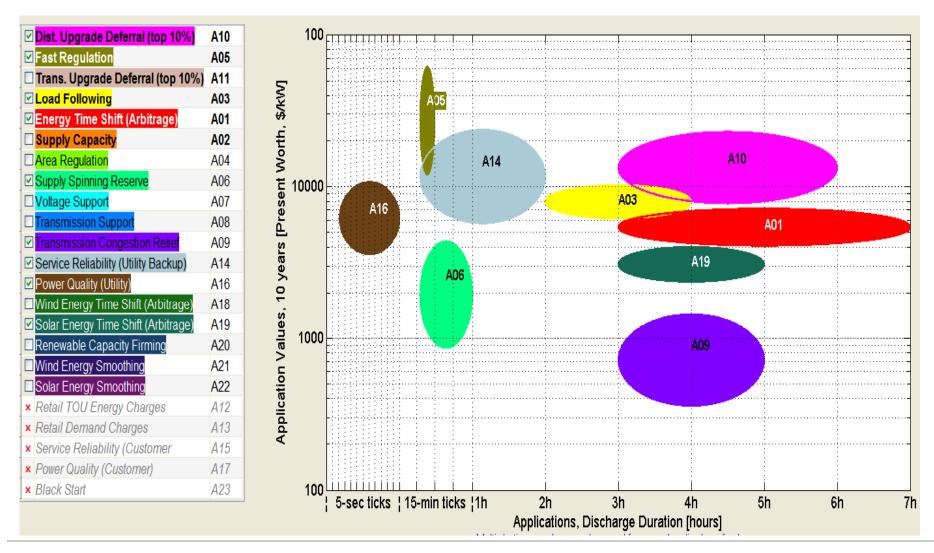
ES-Select Sorts Suggested ES options by their "feasibility Score"

1	Sodium Nickel Chloride	NaNiCl	60%
2	✓ Sodium Sulfur	NaS	56%
3		CAES-c	54%
4	✓ Zinc Bromide	ZnBr	54%
5	☑ Ni batt. (NiCd, NiZn, NiMH)	Ni-batt	51%
6	✓ Advanced Lead Acid	LA-adv	51%
7	☐ Compressed-Air ES, small	CAES-s	46%
8	☐ Lithium Ion - High Energy	LIB-e	42%
9	□Vanadium Redox Battery	V-Redox	31%




Last-Apples-to-Apples Comparison of Options

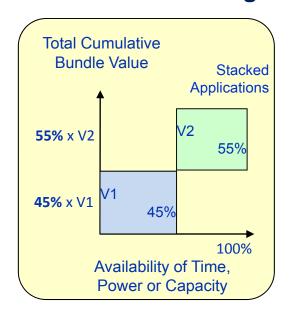
Select Economic and Technical Parameters for Graphic Comparison & Sensitivity Analyses



Sample Outputs – Bubble Charts

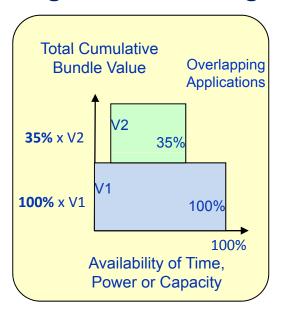
Sample Outputs – Special Charts

PNNL Support



- The total value of combined applications are "estimated"
- PNNL is supporting a study to improve the estimated values by:
 - Substantiating estimates by using real data for each case
 - Enhancing the algorithm for calculating the combined values or "bundling"

Bundling Multiple Storage Applications


Low-Value Bundling

Stacked Applications

- Dedicated Storage Portions (capacity)
- Total Value = 45% V1 + 55% V2

High-Value Bundling

Overlapping Applications

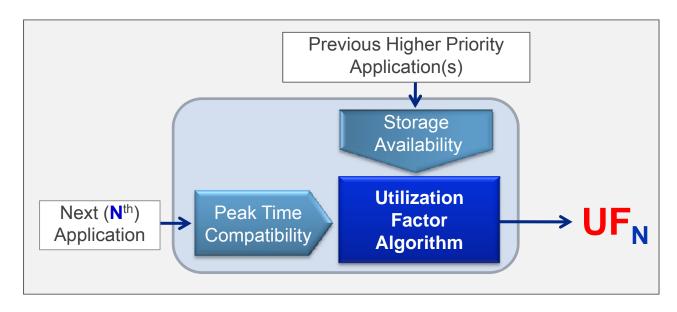
- Shared Storage Portions (capacity)
- Total Value = 100% V1 + 35% V2

Total Value of Bundled Applications

The total value of bundled applications is the sum of the "utilized" or realizable values of each application

Total Value =
$$100\%$$
 x Value 1First (top Priority) application+ $\mathbf{UF_2}$ x Value 2second application+ $\mathbf{UF_3}$ x Value 3third application+ $\mathbf{UF_4}$ x Value 4fourth application+ ...

UF = Utilization Factor = portion of each application value that can be realized in the bundle of applications


Calculating Utilization Factors

DNV KEMA developed a process to quantify utilization factors (UF) for bundled applications.

Combined Benefit = Bundle Benefit + UF x Benefit of Next Application

Value of a storage application in a bundle

Value of the application by itself (no sharing of storage capacity)

Substantiated Utilization Factors (UF)

Following are four Bundling cases for which utilization factors have been calculated using real data from utility (loading), PJM (regulation) and NREL (PV output)

Contents

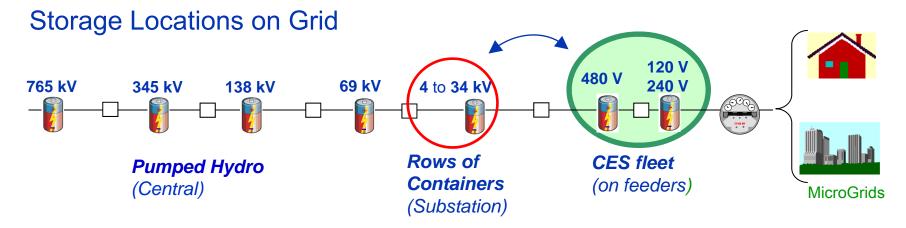
- 1 Examples of DNV KEMA Tools
- 2 Review of ES-Select
- 3 Review of Distribution Valuation Model
- 4 Review of DNV KERMIT Model
- 5 Example of Applying to Use Case

Challenges at Distribution Level that Storage can address

Issues	Problems	Storage Solutions
Distributed Renewables	 Voltage fluctuations Harmonics Non-coincident production Backfeed Production variability Loss of equipment life (due to above) 	 Volt / Var injection Volt / Var injection Energy time shifting Energy time shifting Firming Improve system control (using above methods)
Asset Management	 Upgrade or capacity needed Slow equipment deployment / approval Uncertainty in amount of investment needed Low asset utilization 	 Temporary capacity Modular / transportable Cheaper, smaller increments of re-usable capacity Peak load shifting
Power Outages	 Lost revenue Contract / regulatory penalties Slow restoration process, e.g., cold load pick-up Customer Outage costs & inconvenience 	 Utility service during Outage Utility service during Outage Facilitate restoration via Load Control Service during Outages, quick to bring on-line
Electric Vehicle Integration	 Equipment loss of life, e.g., transf. cool-down Equipment overloading & resulting Impacts 	 Relieves equipment loading Increased capacity

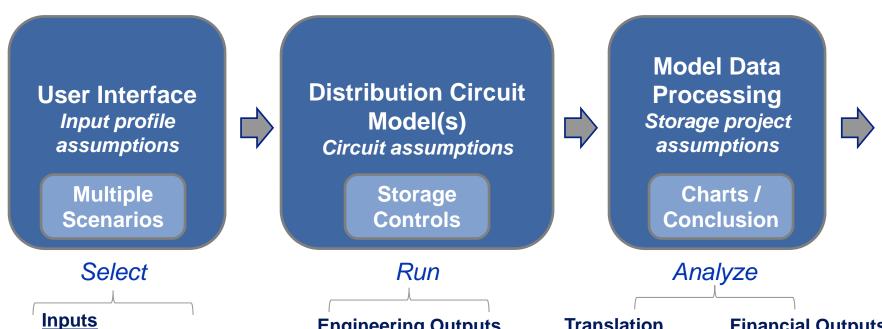
Energy Storage Options / Locations / Formats

Energy Storage Types & Cost


- Lead Acid
- Flow Batteries
- Li-ion group
- NaS
- NaNiCl
- ..

Solution Providers

- **GE**
- ABB
- S&C Electric
- Demand Energy
- ..


Plug-n-Play Packages

- CES
- Shipping Containers
- Mobile Trailers
- •

Modeling Flow

Load profiles EV / No EV PV / No PV (customer vs. util) Storage / No Storage **Storage Control Priority** Reliability Event Etc.

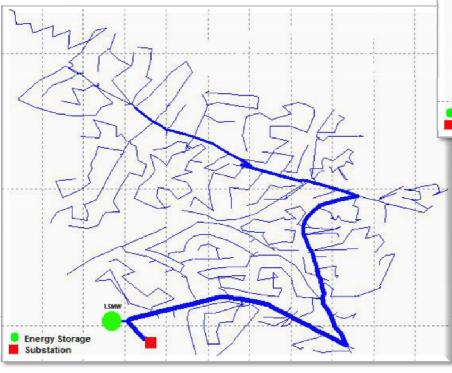
Engineering Outputs

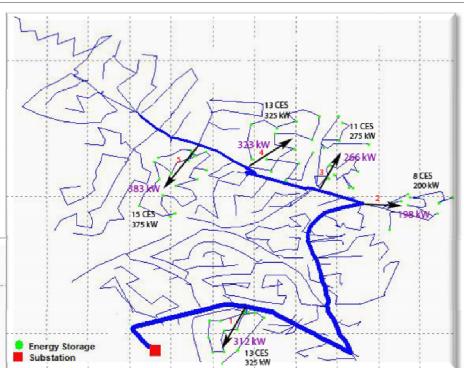
kW Delta (time) Energy JkW Voltage Levels (time) Harmonics 'Equipment' Usage (#) Storage Usage (# cycles) Etc.

Translation

Capacity **Energy Shifted Energy Savings** Power Quality A Reliability **\Delta** Asset lifetime Storage lifetime Etc.

Financial Outputs


Storage Costs Storage Benefits Avoided Costs Earnings **Alternative Benefits** Asset loss of life Deferral values Etc.

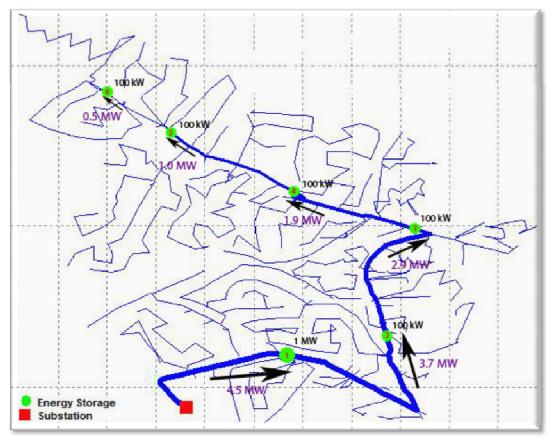


Distributed Storage: Multiple versus a Single Unit

Substation versus edge of Grid

- Difference in performance
- Difference in benefits
- Difference in costs

	Peak	Peak	# of	Capacity
Site	Demand (kW)	Demand (kVA)	Devices	(kW)
1	312	386	13	325
2	198	244	8	200
3	266	320	11	275
4	323	399	13	325
5	383	474	15	375


Assessing Storage Locations

Meeting Circuit Needs

- Storage solution tailored to circuit
- Evaluates multiple options
- Allows for identification of best value options

Site	Peak	Peak	
Site	Demand (kW)	Demand (kVA)	
1	4,555	5,079	
2	3,716	3,716	
3	2,876	3,031	
4	1,853	1,868	
5	992	1,231	
6	453	576	

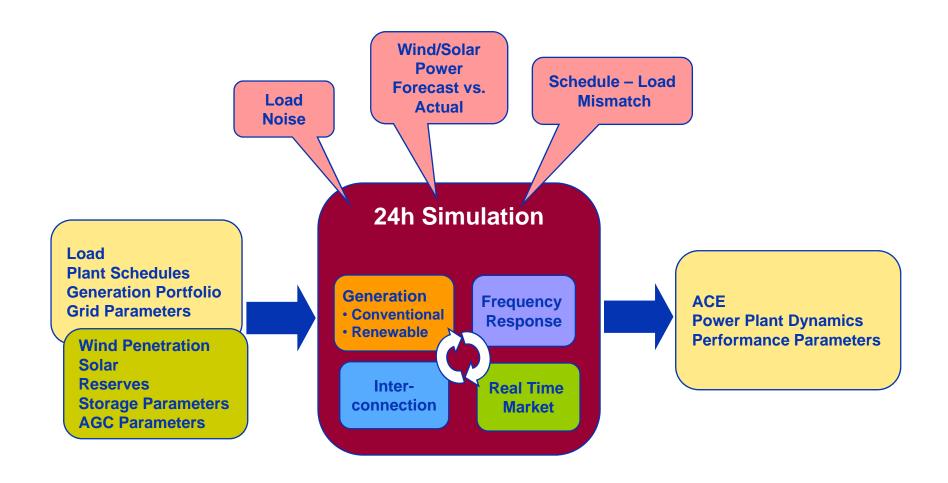
Example shows different storage sizes as a possible solution

Bundling & Controls

- Bundling applications allows you to achieve the maximum benefit for an investment
- Controls are key to efficient bundling
 - Does the battery have enough energy to serve an application when its needed?
 - Are applications compatible, and if not, which application has priority?
 - Does adding an application require additional capacity/energy and if so, is it cost effective for the incremental investment needed?
- Yet, controls must be robust and cost-effective to implement
 - Can the current communications infrastructure support the control scheme and if not, is the incremental investment worth it?
 - Are the controls simple enough to execute over all system conditions, but sophisticated enough to maximize value?
- DNV KEMA's analysis is flexible with regarding control schemes
 - The modeling analysis can incorporate multiple types of controls
 - The team is currently analyzing rule-based approaches and comparing these to 'theoretical', optimal schemes to gauge value

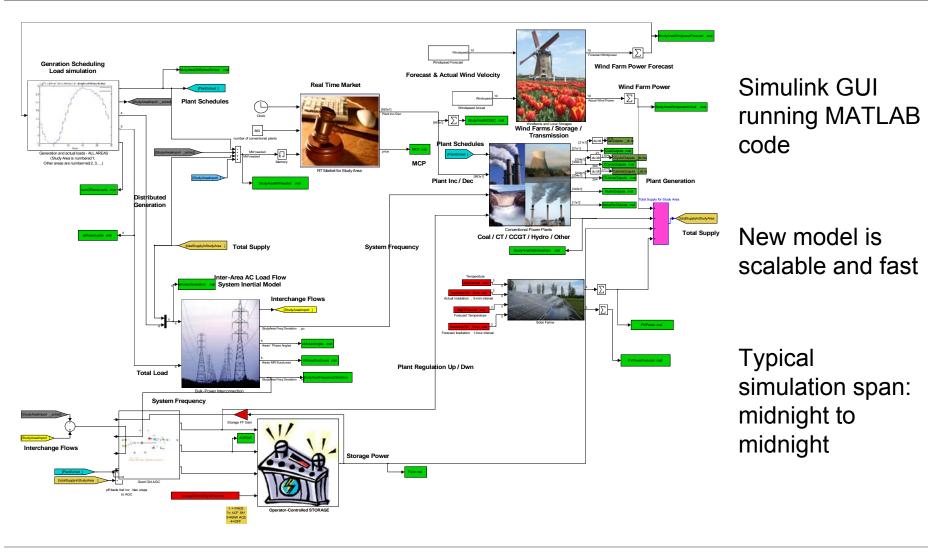
Contents

- 1 Examples of DNV KEMA Tools
- 2 Review of ES-Select
- 3 Review of Distribution Valuation Model
- 4 Review of DNV KERMIT Model
- 5 Example of Applying to Use Case



KEMA Renewable Energy Integration and Modeling Tool

- Developed by KEMA in Europe and the US
- Simulates Real Time Power System Dynamics
- Quantifies Impact of Variable Power Sources on System Operation
- Capabilities:
 - Effect on system dynamic when adding wind and solar to the generation mix
 - Assess opportunities for storage in regulation
 - Compare operation control strategies
 - Investigate integrated approach for wind, solar and storage



The Simulation Concept

Graphical User Interface

Features of our Simulation Model

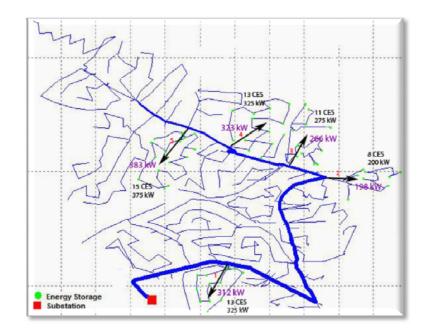
- Time Varying Generation and Loads
- Balancing Market for Electricity
- Dynamics of Conventional Power Plants
- Automatic Generation Control
- Bulk Power Interconnection Dynamics
- Wind Farms
- Photo Voltaic
- Storage (Operator Controlled and Local)
- Emissions (CO2, NOx)

Areas of focus for Tool

- Continue to Explore "Fast Regulation Services" Possibilities
- Protocols for Renewable Operation
 - Example: partial shut-down in anticipation of fall-off
 - Matching wind farm peak capacity plus storage to transmission limits
- Evaluate Impact of Changes in Balancing Market
 - Different look-ahead schemes
 - More Frequent Operation
- Explore Demand Side Impacts
- Model Actual Plant Regulation Activity
- Model Emissions Impact of Decreased Plant Regulation

Contents

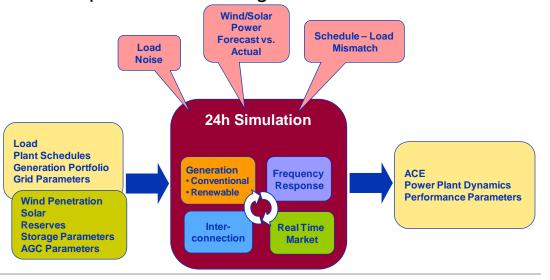
- 1 Examples of DNV KEMA Tools
- 2 Review of ES-Select
- 3 Review of Distribution Valuation Model
- 4 Review of DNV KERMIT Model
- 5 Example of Applying to Use Case


Use Example of Use Case - Distributed Storage

- How will tools be applied to the specific examples
 - In the suite of DNV KEMA Tools, will utilize ES-Select and draw upon Distribution Valuation model as required
- Why ES-Select
 - Incorporates cost and comparison of all potential storage technologies
 - Capable of bundling additional applications into the analysis in order to maximize the benefits that are used in the cost effectiveness evaluation
- Example of Use Case Deferral of Distribution Upgrades
 - Primary Application Deferral
 - Secondary applications
 - Reliability
 - Peak Shaving
 - Volt-Var Control

Use Example of Use Case - Distributed Storage

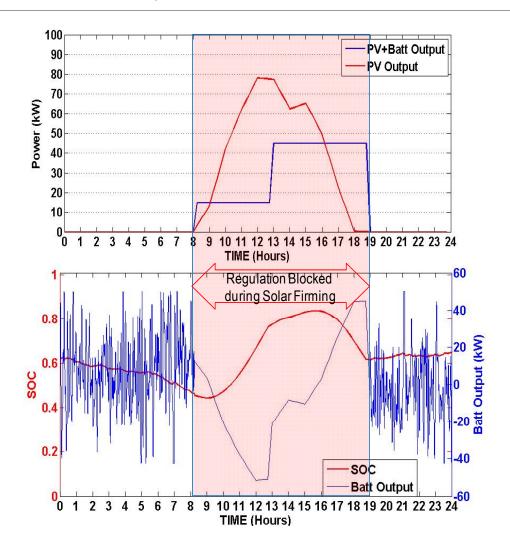
- Use Case Development Model to Cost effectiveness
 - Benefits and Cost will be defined through ES-Select
 - Comparison of alternative approaches will flow through financial modeling of the applications
- Additional areas of analysis
 - Utilization of Distribution Valuation model
 - Defines distributed storage
 - Substation vs. Edge of the Grid



Use Example of Use Case – Ancillary Services

- As applications transition to Wholesale Bulk Applications, DNV KEMA will Utilize additional tools
- Utilization of KERMIT Model
 - In the suite of DNV KEMA Tools, will utilize KERMIT Model to provide analysis of the primary application
 - Model is already calibrated for the CAISO system

- Tap into ES-Select tools to examine the potential technologies that can be utilized in


the analysis

Use Example of Use Case – Ancillary Services

- Bundling of applications with Ancillary Services?
 - In Use Case Analysis, where possible, potential bundling will be examined in the cost effectiveness approach

